ANÁLISIS MATEMÁTICO-FINANCIERO DE NUEVAS OPERACIONES ALEATORIAS DE AMORTIZACIÓN Y AHORRO
ebook

ANÁLISIS MATEMÁTICO-FINANCIERO DE NUEVAS OPERACIONES ALEATORIAS DE AMORTIZACIÓN Y AHORRO (ebook)

Editorial:
UNIVERSIDAD DE ALMERÍA
Materia
Empresa y gestión
ISBN:
978-84-16642-78-6
Páginas:
359
Formato:
PDF
Derechos eBook:
Compartir: 6 dispositivos permitidos.
DRM
Si
-5%
6,00 €
5,70 €
IVA incluido
Comprar

La Tesis Doctoral estudia la aleatoriedad de las operaciones financieras, sujeta a la distribución de probabilidad de la ocurrencia de un determinado suceso que afectará a la cuantía de los capitales que intervienen o a la duración de la operación.En efecto, existen algunas contingencias que sucederán con certeza, entre el que se encuentra el fallecimiento de un individuo, en cuyo caso la aleatoriedad afecta al momento exacto de su ocurrencia. Por otra parte, la ocurrencia de un hecho aleatorio no depende de la voluntad del individuo al que afecta ya que depende del riesgo o de la incertidumbre asociada a dicha eventualidad. Así, el riesgo inherente a un hecho fortuito se medirá mediante probabilidades, con objeto de reducir la incertidumbre objetiva a un valor que describa la no certeza de éste.Centrándonos en el caso del fallecimiento de un individuo, su supervivencia dependerá de factores económicos, culturales, etc., de modo que su fallecimiento a una cierta edad o su supervivencia después de dicha edad estarán regidos por el azar.Dentro de este contexto, los individuos se encontrarán a lo largo de su ciclo vital con una serie de experiencias y eventualidades que afectarán a su planificación financiera. Como consecuencia de estos factores, las previsiones apuntan a que el excesivo envejecimiento de la población traerá consigo la dificultad del sostenimiento del actual sistema de pensiones; la propiedad de la vivienda deberá convertirse en un instrumento para la obtención de capital para las personas mayores y de pensiones bajas; la formación de un capital que cubra una amplia variedad de necesidades del individuo en las situaciones actuales y futuras será inevitable; etc.En el desarrollo de las operaciones financieras analizadas se supondrán ciertas las cuantías y los vencimientos de los capitales que intervienen, y aleatoria la duración de la operación, puesto que dependerá de que suceda o no un determinado fenómeno aleatorio. Así, en este trabajo se han empleado diversos patrones matemáticos que permiten modelizar las operaciones aleatorias de préstamo y de ahorro considerando la no certeza de su duración para ayudar al cálculo de sus diferentes magnitudes.Dado que las operaciones financiero-aleatorias se analizan en el ámbito de la no certeza, el riesgo asociado a esta eventualidad debe ser cuantificado de forma que sean identificadas sus causas implícitas para protegerse de éste. Así, se introduce la probabilidad en el plazo de la operación como medida del riesgo, asignando a cada período la probabilidad de supervivencia del cliente o de una persona a él vinculada y relacionada con la operación. Por esto, se aplicarán las probabilidades de supervivencia estimadas de las tablas de mortalidad para la edad y sexo de cada sujeto considerado como deudor o acreedor, según sea la operación de préstamo o de ahorro, respectivamente. De este modo, se producirá un incremento en el término amortizativo o constitutivo de la operación, mayor que si esta eventualidad no se produjese.Se trata de operaciones financieras en las que la duración es aleatoria y el riesgo está asociado al hecho que se sabe con seguridad que se producirá pero no el instante de su ocurrencia. Así, en el caso de las operaciones de amortización sujetas a una eventualidad, el término amortizativo incluirá la cuota de riesgo, referida ésta a la cantidad que el prestatario entregará al prestamista en cada período para suplir el riesgo asumido.En caso de que el riesgo sea el fallecimiento del prestatario, el riesgo que asume el prestamista será equivalente a la obligación de pago de esta cuota de riesgo por parte del prestatario, eximiéndolo del resto de los términos amortizativos en caso de conclusión de la operación por su fallecimiento.Así pues, al aplicar el análisis matemático al análisis demográfico, surgen métodos y modelos matemáticos que describen la evolución en el tiempo de los fenómenos demográficos, entre los que se encuentran los asociados a la mortalidad, a la población por edad y sexo, y a la estimación de poblaciones futuras.Las operaciones financieras de préstamo pueden presentar aleatoriedad en la contraprestación, vinculada ésta a la duración incierta de la vida del prestatario y/o de una persona vinculada a él. En tal caso, la probabilidad de perduración de una renta de en términos y el pago de éstos, estará supeditada al fenómeno aleatorio de la supervivencia del prestatario.Por otra parte, en las operaciones de ahorro aleatorias, el prestamista puede pactar además si asume el riesgo de que su beneficiario no reciba el capital pactado en contrato si se produce su fallecimiento con anterioridad al final de la operación o, por el contrario, si opta porque su beneficiario sí reciba el capital aunque fallezca en el transcurso de la operación, sin que éste tenga que hacer frente a los términos que faltaran.Cabe señalar que la aleatoriedad también se puede presentar en las cuantías de los capitales, es decir, que éstas sean de naturaleza aleatoria. Esta circunstancia dará lugar al estudio de la distribución de los términos amortizativos o constitutivos de una operación financiera a partir de los conceptos matemático-financieros de distribución continua de capital y renta continua. Además, es relevante el análisis del caso particular de operaciones financieras con períodos de maduración de distinta amplitud, que pueden facilitar el ajuste de la distribución de pagos de la operación con los ingresos regulares del prestatario o prestamista, en préstamos u operaciones de ahorro, respectivamente.